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The heating, evaporation, and explosion regimes for a homogeneous water aerosol droplet are studied. 
Numerous theoretical and experimental results are analyzed and compared. 

Several generalizing studies devoted to evaporation and explosion regimes for an aerosol droplet, heated by intense 

radiation, are known (see, for example, [1]), each of which complement the others in some respect because of the complexity 

of the physical process. The description of heating an individual droplet involves the equations of mass, momentum, and 

energy conservation inside the droplet, the balance equations for the above-mentioned quantities on the droplet surface, the 

relations for the jump of temperature, pressure, and density of the vapor in a thin Knudsen layer separating the liquid and gas 

phases, the conservation equations in an outer vapor-air mixture, and the equations of state for the water and the gas. The 

comparative analysis performed in the present study clearly testifies in favor of the hydrodynamic approach [2]. 

We will restrict our consideration to fairly small optically homogeneous droplets (with the initial radius r o < k, a -  l, 

where k is the radiation wavelength and c~ is the coefficient of radiation absorption by the water). A rate of the heat release 

inside the droplet is characterized by the quantity q = %COcr/pw)2Io, where Pw and Per are the initial and critical densities of 
the water. Let us nondimensionalize the equations, taking characteristic quantities outside the droplet to be the initial tempera- 

ture of the air To, the initial pressure in the air p~,  the characteristic density Pv (of the vapor at T b = 373 K or the initial 

density of the air), and the critical parameters of the water Pcr, Pcr, Tcr, and hcr inside the droplet. On the assumption that the 

external medium is continuous, the Knudsen number is small, i.e., Kn = e/r o < < 1 (e is the free length of gas molecules). 

Using the familiar estimation Re = PrPe = PrDPe D -- M/Kn or % - pvcl, k o - pvCpcl, and D O - cl (here %, ko, and D O 

are the characteristic coefficients of viscosity, thermal conductivity, and diffusion for the mixture; Cp is the specific heat; c 

is the speed of sound in the mixture; Re = pvUvro/%, Pe = OvuvCpro/ko, Pr = ko/Cp%, and M = Uv/C are the Reynolds, 

Peclet, Prandtl, and Mach numbers; u v is the characteristic velocity of the vapor; Pe D = Uvro/D o and PrD= Do/Pv % are the 
diffusional Peclet and Prandtl numbers; for gases Pr, Pr D - 1) we may distinguish four evaporation regimes in ascending 

order of the M number [3]: 1) diffusional, PeD, Pe << 1; M << Kn; 2) diffusional-convective, PeD, Pe -- 1; M - Kn 

< < 1; 3) subsonic, PeD, Pe > > 1; M < 1; and 4) sonic, M e --- 1 (at the outer boundary of the Knudsen layer). 

Solutions of the equations outside the droplet give the following expressions for mass and heat fluxes from the 
surface of the evaporating droplet: 
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Fig. 1. The evaporation tev and explosion tex times as functions of the heat 
release rate q in a logarithmic scale: dashed line, approximate relations tev 
= 3 ln20wL/Clo and tex = (hex - h0)20cr2/q(p/; dot-and-dash line, radia- 

, ~ , ~ _  2 1 It~to, t < t o .  tion pulse with the shape in time , : , j - - - ~ , o ~ e _ ~ , / , o _ , V ~  ' t>~to (a); the map of 

heating and explosion regimes on the plane of initial droplet r o vs heat 

release rate q in a logarithmic scale (b): 1) results of study [4]; 2) [5]; 3) 
[7]; 4) [8]; 5) [9]; 6) [10]; 7) [11]; 8) [12]; 9) [13]; 10) [14]; 11) [15]; 12) 
[16]. t, see; r o,/~rn; Io, W/m 2. 

Here, (pD), (k), and (Cp/k) are the temperature-mean quantities; r d is the variable droplet radius; Yo. and Yt are the mass 
concentrations of the vapor at infinity and at the outer boundary of the Knudsen layer; T t, Pt, ht, and u t are the temperature, 
pressure, enthalpy, and velocity of the vapor at the outer boundary of the Knudsen layer; 3~ is the specific heat ratio for the 
vapor; /z is the molar mass of the vapor; L is the latent evaporation heat; R is the universal gas constant; and I% is the 

enthalpy of the saturated vapor at a temperature of the droplet surface T d. Implicit relations (1) connect the mass j and heat 
JT fluxes to the surface temperature T a. In laboratory conditions, T o = 288 K and p~ = 1 atm. When T d < 330 K, by 
virtue of linearization, relation (1) becomes explicit (diffusional regime 1). With diffusional-convective regime 2, an iteration 
process must be organized for the quantities Pt, Ml, and YI [3]. Regimes 2 and 3 should be conjugated from the condition of 
equality of the fluxes calculated by upper and lower formulae (1). The temperature T., dividing diffusional regimes 1 and 2 
and purely convective regimes 3 and 4, constitutes 381 and 275 K at r o = 1 and 10/zm, respectively. The sonic regime sets 
in when T d _> 397 K. The vapor velocity cannot exceed the speed of sound in the Knudsen layer, since the Knudsen layer is 
markedly smaller than the droplet radius (l << r0), and the flow therein is one-dimensional. Nonetheless, the vapor velocity 
u v will rise together with the speed of sound as the heat release rate q increases. 
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The exact solution of the balance equations of mass and energy on the droplet surface under the assumption that the 

temperature inside droplet is uniform yields a linear relation between the evaporation time tev (for example, this is the time 

of a reduction in the droplet radius by half, and in the mass by an order of magnitude) and the reciprocal of the heat release 

rate, in accordance with the approximate expression tev = 3 In 2 0wL/qo (where qo = C~oIo) for a quasi-steady evaporation 

(dTd/dt = 0). This solution is presented by a solid line in the left-hand upper corner (see Fig. la), and the approximate 

solution is shown by a dashed line.* The same figure gives experimental values (circles) and a prediction (rhomb) borrowed 

from studies [4] and [5], respectively. 
Nondimensionalized equations inside the droplet contain two similarity parameters, viz., the water Peelet number Pe w 

= Perhcrr0Uw/(kwTcr) and the Euler number Eu = Pcr/PcrU2w (where k w is the characteristic thermal conductivity of the 

water, and u w < u o = ro/to and t o = Pcrhcr/q are the characteristic water velocity and heating time), which define heating 

and explosion regimes for the droplet. The viscosity inside and outside the droplet may be disregarded, since it gives out-of- 

order terms. By equating Pe w and Eu to unity, we find levels of the characteristic water velocities u T = kwTcr/Perhcrr 0 = 
0.507-0.0507 m/sec (at r o = 1-10/~m and k w = 0.522 W/m3), Up = (Per~Per) IA = 264 m/see, and the corresponding levels 

of the heat release rate qT = kwTcr/r2o = 3.38 • 1014-3.38 • 1012 W/m 3 and qp = Pcrhcrup/r0 = 1.75 • 1017-1.75 • 

1016 W/m 3. From the hydrodynamics standpoint, the following heating and explosion regimes exist inside the droplet in order 

of increasing quantity q [6]: I) heat-conductive, Pe w << 1, q << qx, and u w << UT; II) heat-conductive-convective, Pe w 

1, q - qT, Uw -- UT, and to - t T = r0/uT; III) convective, Pe w > >  1, Eu > >  1, and qT < < q < < qp; IV) non- 
isobaric, Eu - 1, q - qp, u w - Up, and t o - tp = ro/up; and V) isochorie, Eu < < 1, q > qa = pcrhcra / ro  ~ 1018-1017 

W/m 3, where a is the speed of sound in the water. In heating regime I, the convection (the thermal expansion) of the water 

may be ignored; in regime II, the convection becomes comparable with the heat conduction, and a threshold of the explosion 

(of the catastrophic expansion) occurs; in regime III, both the heat conduction and the pressure gradient may be neglected; in 

regime IV, the pressure gradient becomes appreciable, and the heating time is of the same order as the time of a rapid 

scattering (of explosion) of the substance; in regime V, the heating is accomplished over a time so short that the water 

density remains constant, whereas the explosion (scattering) time of the substance is longer than the heating time. 

It has been established that with a heat-conductive regime of heating I, the evaporation from the surface proceeds in 

diffusional regime I; with regime II, predominantly in regimes 2 and 3; with regime III, chiefly in regimes 3 and 4; and with 

regimes IV and V, in sonic regime 4. 

The convective regime of heating III is the simplest mathematically, since there are no temperature and pressure 

gradients inside the droplet [6]. On the map of heating regimes r o -  q (or ro-I0),  constructed in Fig. Ib, this regime occupies 

the same space as neighboring regimes II and IV taken together. Here, solid lines show the relations qT(r0) and qp(ro) which 

are the "centers" of regimes II and IV; dashed lines indicate the boundaries of regimes II and IV offset from them by a "half-- 

order": q+o.5 = 0.5 • 10 +1 qT,p; map symbols (squares, rbombs, etc.) denote experimental [7-10] and theoretical [11-16] 

studies, for which the times of heating up to the explosion temperature tex are derived explicitly or can be evaluated (see Fig. 

la). 

In regime III, the problem is reduced to solving the system of ordinary differential equations for the temperature 

inside the droplet, for variable radius, and for velocity, the equation of state for the water [17] and the implicit algebraic 

relation for the surface temperature (T - T d = 200 K has been calculated near regime II). The exact solution, with allow- 

ance for temperature variations in thermophysical properties of the water, yields the linear relation tex _q-I both for 

continuous and pulse radiation (see Fig. la). This result is consistent with those obtained by other authors, moreover, in 

regimes II and IV as well. In the basic approximation, the collapse (evaporation or explosion) time of the optically homoge- 

neous droplet is independent of the radius r o and inversely proportional to the heat release rate. The linearized solution tex = 
(hex - h0)PZer/q(p) is also close to exact. 

The calculations, carried out in regime II with the water velocity and thermal conductivity taken into account reveal 

that the velocity becomes inconsiderable as the explosion threshold is approached (from above), whereas near regime IV it 

attains ro/to. 
The explosion threshold is inversely proportional to to2 (qthr --  r0 -2) and practically coincides with the lower 

boundary of regime II (see Fig. lb). 

No consideration has been given in the study to the processes of plasma formation. 

*qo = 8"10410 W/m3, q = 8-09"10310 W/m3 at a o = 8-104 m -1. 
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The performed hydrodynamic analysis of the evaporation and explosion may be extended to the case of larger 

optically inhomogeneous droplets. 

NOTATION 

ro, initial droPlet radius; Io, incident radiation intensity; q, heat release rate; p, gas or liquid density; T, temperature; 
p, pressure; h, enthalpy; Kn, Re, Pe, Pr, M, Eu, Knudsen, Reynolds, Peclet, Prandtl, Mach, and Euler numbers; t, time; Y, 

vapor mass concentration; j, vapor mass flux; JT, energy flux. 
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